This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping of a scalar multiplication with a function of scalars is finitely supported if the function of scalars is finitely supported. (Contributed by AV, 9-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mndpsuppfi.r | ⊢ 𝑅 = ( Base ‘ 𝑀 ) | |
| Assertion | mndpfsupp | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) finSupp ( 0g ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndpsuppfi.r | ⊢ 𝑅 = ( Base ‘ 𝑀 ) | |
| 2 | elmapfn | ⊢ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) → 𝐴 Fn 𝑉 ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝐴 Fn 𝑉 ) |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → 𝐴 Fn 𝑉 ) |
| 5 | elmapfn | ⊢ ( 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) → 𝐵 Fn 𝑉 ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) → 𝐵 Fn 𝑉 ) |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → 𝐵 Fn 𝑉 ) |
| 8 | simp1r | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → 𝑉 ∈ 𝑋 ) | |
| 9 | 4 7 8 8 | offun | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → Fun ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) ) |
| 10 | id | ⊢ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) → 𝐴 finSupp ( 0g ‘ 𝑀 ) ) | |
| 11 | 10 | fsuppimpd | ⊢ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) → ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) |
| 12 | id | ⊢ ( 𝐵 finSupp ( 0g ‘ 𝑀 ) → 𝐵 finSupp ( 0g ‘ 𝑀 ) ) | |
| 13 | 12 | fsuppimpd | ⊢ ( 𝐵 finSupp ( 0g ‘ 𝑀 ) → ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) |
| 14 | 11 13 | anim12i | ⊢ ( ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) → ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ∧ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) |
| 15 | 1 | mndpsuppfi | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( ( 𝐴 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ∧ ( 𝐵 supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) |
| 16 | 14 15 | syl3an3 | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) |
| 17 | ovex | ⊢ ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) ∈ V | |
| 18 | fvexd | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → ( 0g ‘ 𝑀 ) ∈ V ) | |
| 19 | isfsupp | ⊢ ( ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) ∈ V ∧ ( 0g ‘ 𝑀 ) ∈ V ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) finSupp ( 0g ‘ 𝑀 ) ↔ ( Fun ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) ∧ ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) ) | |
| 20 | 17 18 19 | sylancr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) finSupp ( 0g ‘ 𝑀 ) ↔ ( Fun ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) ∧ ( ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) supp ( 0g ‘ 𝑀 ) ) ∈ Fin ) ) ) |
| 21 | 9 16 20 | mpbir2and | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑉 ∈ 𝑋 ) ∧ ( 𝐴 ∈ ( 𝑅 ↑m 𝑉 ) ∧ 𝐵 ∈ ( 𝑅 ↑m 𝑉 ) ) ∧ ( 𝐴 finSupp ( 0g ‘ 𝑀 ) ∧ 𝐵 finSupp ( 0g ‘ 𝑀 ) ) ) → ( 𝐴 ∘f ( +g ‘ 𝑀 ) 𝐵 ) finSupp ( 0g ‘ 𝑀 ) ) |