This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mettri3 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐶 ) + ( 𝐵 𝐷 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mettri | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) ) | |
| 2 | metsym | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) = ( 𝐶 𝐷 𝐵 ) ) | |
| 3 | 2 | 3adant3r1 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) = ( 𝐶 𝐷 𝐵 ) ) |
| 4 | 3 | oveq2d | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) + ( 𝐵 𝐷 𝐶 ) ) = ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| 5 | 1 4 | breqtrrd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐶 ) + ( 𝐵 𝐷 𝐶 ) ) ) |