This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of Gleason p. 223. (Contributed by NM, 27-Aug-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mettri | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mettri2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) | |
| 2 | 1 | expcom | ⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 3 | 2 | 3coml | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) ) |
| 4 | 3 | impcom | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| 5 | metsym | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) = ( 𝐶 𝐷 𝐴 ) ) | |
| 6 | 5 | 3adant3r2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) = ( 𝐶 𝐷 𝐴 ) ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) = ( ( 𝐶 𝐷 𝐴 ) + ( 𝐶 𝐷 𝐵 ) ) ) |
| 8 | 4 7 | breqtrrd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐵 ) ≤ ( ( 𝐴 𝐷 𝐶 ) + ( 𝐶 𝐷 𝐵 ) ) ) |