This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mettri3 | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) + ( B D C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mettri | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) + ( C D B ) ) ) |
|
| 2 | metsym | |- ( ( D e. ( Met ` X ) /\ B e. X /\ C e. X ) -> ( B D C ) = ( C D B ) ) |
|
| 3 | 2 | 3adant3r1 | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( C D B ) ) |
| 4 | 3 | oveq2d | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) + ( B D C ) ) = ( ( A D C ) + ( C D B ) ) ) |
| 5 | 1 4 | breqtrrd | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D B ) <_ ( ( A D C ) + ( B D C ) ) ) |