This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metrtri | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ ) | |
| 2 | 1 | 3adant3r2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐷 𝐶 ) ∈ ℝ ) |
| 3 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ ) | |
| 4 | 3 | 3adant3r1 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) ∈ ℝ ) |
| 5 | eqid | ⊢ ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 ) | |
| 6 | 5 | xrsdsreval | ⊢ ( ( ( 𝐴 𝐷 𝐶 ) ∈ ℝ ∧ ( 𝐵 𝐷 𝐶 ) ∈ ℝ ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ) |
| 7 | 2 4 6 | syl2anc | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) = ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ) |
| 8 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 9 | 5 | xmetrtri2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 10 | 8 9 | sylan | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐷 𝐶 ) ( dist ‘ ℝ*𝑠 ) ( 𝐵 𝐷 𝐶 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 11 | 7 10 | eqbrtrrd | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( abs ‘ ( ( 𝐴 𝐷 𝐶 ) − ( 𝐵 𝐷 𝐶 ) ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |