This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metrtri | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A D C ) - ( B D C ) ) ) <_ ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metcl | |- ( ( D e. ( Met ` X ) /\ A e. X /\ C e. X ) -> ( A D C ) e. RR ) |
|
| 2 | 1 | 3adant3r2 | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D C ) e. RR ) |
| 3 | metcl | |- ( ( D e. ( Met ` X ) /\ B e. X /\ C e. X ) -> ( B D C ) e. RR ) |
|
| 4 | 3 | 3adant3r1 | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) e. RR ) |
| 5 | eqid | |- ( dist ` RR*s ) = ( dist ` RR*s ) |
|
| 6 | 5 | xrsdsreval | |- ( ( ( A D C ) e. RR /\ ( B D C ) e. RR ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) = ( abs ` ( ( A D C ) - ( B D C ) ) ) ) |
| 7 | 2 4 6 | syl2anc | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) = ( abs ` ( ( A D C ) - ( B D C ) ) ) ) |
| 8 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 9 | 5 | xmetrtri2 | |- ( ( D e. ( *Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) <_ ( A D B ) ) |
| 10 | 8 9 | sylan | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D C ) ( dist ` RR*s ) ( B D C ) ) <_ ( A D B ) ) |
| 11 | 7 10 | eqbrtrrd | |- ( ( D e. ( Met ` X ) /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( abs ` ( ( A D C ) - ( B D C ) ) ) <_ ( A D B ) ) |