This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metn0 | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ ) | |
| 2 | frel | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ → Rel 𝐷 ) | |
| 3 | reldm0 | ⊢ ( Rel 𝐷 → ( 𝐷 = ∅ ↔ dom 𝐷 = ∅ ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 = ∅ ↔ dom 𝐷 = ∅ ) ) |
| 5 | 1 | fdmd | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 6 | 5 | eqeq1d | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( dom 𝐷 = ∅ ↔ ( 𝑋 × 𝑋 ) = ∅ ) ) |
| 7 | 4 6 | bitrd | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 = ∅ ↔ ( 𝑋 × 𝑋 ) = ∅ ) ) |
| 8 | xpeq0 | ⊢ ( ( 𝑋 × 𝑋 ) = ∅ ↔ ( 𝑋 = ∅ ∨ 𝑋 = ∅ ) ) | |
| 9 | oridm | ⊢ ( ( 𝑋 = ∅ ∨ 𝑋 = ∅ ) ↔ 𝑋 = ∅ ) | |
| 10 | 8 9 | bitri | ⊢ ( ( 𝑋 × 𝑋 ) = ∅ ↔ 𝑋 = ∅ ) |
| 11 | 7 10 | bitrdi | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 = ∅ ↔ 𝑋 = ∅ ) ) |
| 12 | 11 | necon3bid | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → ( 𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅ ) ) |