This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007) (Revised by Mario Carneiro, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | metn0 | |- ( D e. ( Met ` X ) -> ( D =/= (/) <-> X =/= (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metf | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
|
| 2 | frel | |- ( D : ( X X. X ) --> RR -> Rel D ) |
|
| 3 | reldm0 | |- ( Rel D -> ( D = (/) <-> dom D = (/) ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( D e. ( Met ` X ) -> ( D = (/) <-> dom D = (/) ) ) |
| 5 | 1 | fdmd | |- ( D e. ( Met ` X ) -> dom D = ( X X. X ) ) |
| 6 | 5 | eqeq1d | |- ( D e. ( Met ` X ) -> ( dom D = (/) <-> ( X X. X ) = (/) ) ) |
| 7 | 4 6 | bitrd | |- ( D e. ( Met ` X ) -> ( D = (/) <-> ( X X. X ) = (/) ) ) |
| 8 | xpeq0 | |- ( ( X X. X ) = (/) <-> ( X = (/) \/ X = (/) ) ) |
|
| 9 | oridm | |- ( ( X = (/) \/ X = (/) ) <-> X = (/) ) |
|
| 10 | 8 9 | bitri | |- ( ( X X. X ) = (/) <-> X = (/) ) |
| 11 | 7 10 | bitrdi | |- ( D e. ( Met ` X ) -> ( D = (/) <-> X = (/) ) ) |
| 12 | 11 | necon3bid | |- ( D e. ( Met ` X ) -> ( D =/= (/) <-> X =/= (/) ) ) |