This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | max0sub | |- ( A e. RR -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | |- ( A e. RR -> 0 e. RR ) |
|
| 2 | id | |- ( A e. RR -> A e. RR ) |
|
| 3 | iftrue | |- ( 0 <_ A -> if ( 0 <_ A , A , 0 ) = A ) |
|
| 4 | 3 | adantl | |- ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ A , A , 0 ) = A ) |
| 5 | 0xr | |- 0 e. RR* |
|
| 6 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 7 | 6 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> -u A e. RR ) |
| 8 | 7 | rexrd | |- ( ( A e. RR /\ 0 <_ A ) -> -u A e. RR* ) |
| 9 | le0neg2 | |- ( A e. RR -> ( 0 <_ A <-> -u A <_ 0 ) ) |
|
| 10 | 9 | biimpa | |- ( ( A e. RR /\ 0 <_ A ) -> -u A <_ 0 ) |
| 11 | xrmaxeq | |- ( ( 0 e. RR* /\ -u A e. RR* /\ -u A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) |
|
| 12 | 5 8 10 11 | mp3an2i | |- ( ( A e. RR /\ 0 <_ A ) -> if ( 0 <_ -u A , -u A , 0 ) = 0 ) |
| 13 | 4 12 | oveq12d | |- ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = ( A - 0 ) ) |
| 14 | recn | |- ( A e. RR -> A e. CC ) |
|
| 15 | 14 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 16 | 15 | subid1d | |- ( ( A e. RR /\ 0 <_ A ) -> ( A - 0 ) = A ) |
| 17 | 13 16 | eqtrd | |- ( ( A e. RR /\ 0 <_ A ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |
| 18 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 19 | 18 | adantr | |- ( ( A e. RR /\ A <_ 0 ) -> A e. RR* ) |
| 20 | simpr | |- ( ( A e. RR /\ A <_ 0 ) -> A <_ 0 ) |
|
| 21 | xrmaxeq | |- ( ( 0 e. RR* /\ A e. RR* /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) |
|
| 22 | 5 19 20 21 | mp3an2i | |- ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ A , A , 0 ) = 0 ) |
| 23 | le0neg1 | |- ( A e. RR -> ( A <_ 0 <-> 0 <_ -u A ) ) |
|
| 24 | 23 | biimpa | |- ( ( A e. RR /\ A <_ 0 ) -> 0 <_ -u A ) |
| 25 | 24 | iftrued | |- ( ( A e. RR /\ A <_ 0 ) -> if ( 0 <_ -u A , -u A , 0 ) = -u A ) |
| 26 | 22 25 | oveq12d | |- ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = ( 0 - -u A ) ) |
| 27 | df-neg | |- -u -u A = ( 0 - -u A ) |
|
| 28 | 14 | adantr | |- ( ( A e. RR /\ A <_ 0 ) -> A e. CC ) |
| 29 | 28 | negnegd | |- ( ( A e. RR /\ A <_ 0 ) -> -u -u A = A ) |
| 30 | 27 29 | eqtr3id | |- ( ( A e. RR /\ A <_ 0 ) -> ( 0 - -u A ) = A ) |
| 31 | 26 30 | eqtrd | |- ( ( A e. RR /\ A <_ 0 ) -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |
| 32 | 1 2 17 31 | lecasei | |- ( A e. RR -> ( if ( 0 <_ A , A , 0 ) - if ( 0 <_ -u A , -u A , 0 ) ) = A ) |