This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matval.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | ||
| matval.t | ⊢ · = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | ||
| Assertion | matval | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐴 = ( 𝐺 sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matval.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matval.g | ⊢ 𝐺 = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) | |
| 3 | matval.t | ⊢ · = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) | |
| 4 | elex | ⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) | |
| 5 | id | ⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) | |
| 6 | id | ⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) | |
| 7 | 6 | sqxpeqd | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 × 𝑛 ) = ( 𝑁 × 𝑁 ) ) |
| 8 | 5 7 | oveqan12rd | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) = ( 𝑅 freeLMod ( 𝑁 × 𝑁 ) ) ) |
| 9 | 8 2 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) = 𝐺 ) |
| 10 | 6 6 6 | oteq123d | ⊢ ( 𝑛 = 𝑁 → 〈 𝑛 , 𝑛 , 𝑛 〉 = 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
| 11 | 5 10 | oveqan12rd | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ) |
| 12 | 11 3 | eqtr4di | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) = · ) |
| 13 | 12 | opeq2d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 = 〈 ( .r ‘ ndx ) , · 〉 ) |
| 14 | 9 13 | oveq12d | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑟 = 𝑅 ) → ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 ) = ( 𝐺 sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) |
| 15 | df-mat | ⊢ Mat = ( 𝑛 ∈ Fin , 𝑟 ∈ V ↦ ( ( 𝑟 freeLMod ( 𝑛 × 𝑛 ) ) sSet 〈 ( .r ‘ ndx ) , ( 𝑟 maMul 〈 𝑛 , 𝑛 , 𝑛 〉 ) 〉 ) ) | |
| 16 | ovex | ⊢ ( 𝐺 sSet 〈 ( .r ‘ ndx ) , · 〉 ) ∈ V | |
| 17 | 14 15 16 | ovmpoa | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑁 Mat 𝑅 ) = ( 𝐺 sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) |
| 18 | 4 17 | sylan2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑁 Mat 𝑅 ) = ( 𝐺 sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) |
| 19 | 1 18 | eqtrid | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝐴 = ( 𝐺 sSet 〈 ( .r ‘ ndx ) , · 〉 ) ) |