This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matval.a | |- A = ( N Mat R ) |
|
| matval.g | |- G = ( R freeLMod ( N X. N ) ) |
||
| matval.t | |- .x. = ( R maMul <. N , N , N >. ) |
||
| Assertion | matval | |- ( ( N e. Fin /\ R e. V ) -> A = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matval.a | |- A = ( N Mat R ) |
|
| 2 | matval.g | |- G = ( R freeLMod ( N X. N ) ) |
|
| 3 | matval.t | |- .x. = ( R maMul <. N , N , N >. ) |
|
| 4 | elex | |- ( R e. V -> R e. _V ) |
|
| 5 | id | |- ( r = R -> r = R ) |
|
| 6 | id | |- ( n = N -> n = N ) |
|
| 7 | 6 | sqxpeqd | |- ( n = N -> ( n X. n ) = ( N X. N ) ) |
| 8 | 5 7 | oveqan12rd | |- ( ( n = N /\ r = R ) -> ( r freeLMod ( n X. n ) ) = ( R freeLMod ( N X. N ) ) ) |
| 9 | 8 2 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( r freeLMod ( n X. n ) ) = G ) |
| 10 | 6 6 6 | oteq123d | |- ( n = N -> <. n , n , n >. = <. N , N , N >. ) |
| 11 | 5 10 | oveqan12rd | |- ( ( n = N /\ r = R ) -> ( r maMul <. n , n , n >. ) = ( R maMul <. N , N , N >. ) ) |
| 12 | 11 3 | eqtr4di | |- ( ( n = N /\ r = R ) -> ( r maMul <. n , n , n >. ) = .x. ) |
| 13 | 12 | opeq2d | |- ( ( n = N /\ r = R ) -> <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. = <. ( .r ` ndx ) , .x. >. ) |
| 14 | 9 13 | oveq12d | |- ( ( n = N /\ r = R ) -> ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |
| 15 | df-mat | |- Mat = ( n e. Fin , r e. _V |-> ( ( r freeLMod ( n X. n ) ) sSet <. ( .r ` ndx ) , ( r maMul <. n , n , n >. ) >. ) ) |
|
| 16 | ovex | |- ( G sSet <. ( .r ` ndx ) , .x. >. ) e. _V |
|
| 17 | 14 15 16 | ovmpoa | |- ( ( N e. Fin /\ R e. _V ) -> ( N Mat R ) = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |
| 18 | 4 17 | sylan2 | |- ( ( N e. Fin /\ R e. V ) -> ( N Mat R ) = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |
| 19 | 1 18 | eqtrid | |- ( ( N e. Fin /\ R e. V ) -> A = ( G sSet <. ( .r ` ndx ) , .x. >. ) ) |