This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mat1ric.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| Assertion | mat1ric | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ≃𝑟 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1ric.a | ⊢ 𝐴 = ( { 𝐸 } Mat 𝑅 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 4 | eqid | ⊢ 〈 𝐸 , 𝐸 〉 = 〈 𝐸 , 𝐸 〉 | |
| 5 | opeq2 | ⊢ ( 𝑥 = 𝑦 → 〈 〈 𝐸 , 𝐸 〉 , 𝑥 〉 = 〈 〈 𝐸 , 𝐸 〉 , 𝑦 〉 ) | |
| 6 | 5 | sneqd | ⊢ ( 𝑥 = 𝑦 → { 〈 〈 𝐸 , 𝐸 〉 , 𝑥 〉 } = { 〈 〈 𝐸 , 𝐸 〉 , 𝑦 〉 } ) |
| 7 | 6 | cbvmptv | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ { 〈 〈 𝐸 , 𝐸 〉 , 𝑥 〉 } ) = ( 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ { 〈 〈 𝐸 , 𝐸 〉 , 𝑦 〉 } ) |
| 8 | 2 1 3 4 7 | mat1rngiso | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↦ { 〈 〈 𝐸 , 𝐸 〉 , 𝑥 〉 } ) ∈ ( 𝑅 RingIso 𝐴 ) ) |
| 9 | 8 | ne0d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → ( 𝑅 RingIso 𝐴 ) ≠ ∅ ) |
| 10 | brric | ⊢ ( 𝑅 ≃𝑟 𝐴 ↔ ( 𝑅 RingIso 𝐴 ) ≠ ∅ ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ) → 𝑅 ≃𝑟 𝐴 ) |