This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mat1ric.a | |- A = ( { E } Mat R ) |
|
| Assertion | mat1ric | |- ( ( R e. Ring /\ E e. V ) -> R ~=r A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mat1ric.a | |- A = ( { E } Mat R ) |
|
| 2 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 3 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 4 | eqid | |- <. E , E >. = <. E , E >. |
|
| 5 | opeq2 | |- ( x = y -> <. <. E , E >. , x >. = <. <. E , E >. , y >. ) |
|
| 6 | 5 | sneqd | |- ( x = y -> { <. <. E , E >. , x >. } = { <. <. E , E >. , y >. } ) |
| 7 | 6 | cbvmptv | |- ( x e. ( Base ` R ) |-> { <. <. E , E >. , x >. } ) = ( y e. ( Base ` R ) |-> { <. <. E , E >. , y >. } ) |
| 8 | 2 1 3 4 7 | mat1rngiso | |- ( ( R e. Ring /\ E e. V ) -> ( x e. ( Base ` R ) |-> { <. <. E , E >. , x >. } ) e. ( R RingIso A ) ) |
| 9 | 8 | ne0d | |- ( ( R e. Ring /\ E e. V ) -> ( R RingIso A ) =/= (/) ) |
| 10 | brric | |- ( R ~=r A <-> ( R RingIso A ) =/= (/) ) |
|
| 11 | 9 10 | sylibr | |- ( ( R e. Ring /\ E e. V ) -> R ~=r A ) |