This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a set, the value of the set exponentiation ( B ^m A ) is the class of all functions from A to B . Generalisation of mapvalg (which does not require ax-rep ) to arbitrary domains. Note that the class { f | f : A --> B } can only contain set-functions, as opposed to arbitrary class-functions. When A is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 ), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapfset | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ( 𝐵 ↑m 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑚 ∈ V | |
| 2 | feq1 | ⊢ ( 𝑓 = 𝑚 → ( 𝑓 : 𝐴 ⟶ 𝐵 ↔ 𝑚 : 𝐴 ⟶ 𝐵 ) ) | |
| 3 | 1 2 | elab | ⊢ ( 𝑚 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ↔ 𝑚 : 𝐴 ⟶ 𝐵 ) |
| 4 | simpr | ⊢ ( ( 𝑚 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 5 | dmfex | ⊢ ( ( 𝑚 ∈ V ∧ 𝑚 : 𝐴 ⟶ 𝐵 ) → 𝐴 ∈ V ) | |
| 6 | 1 5 | mpan | ⊢ ( 𝑚 : 𝐴 ⟶ 𝐵 → 𝐴 ∈ V ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑚 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| 8 | 4 7 | elmapd | ⊢ ( ( 𝑚 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑚 : 𝐴 ⟶ 𝐵 ) ) |
| 9 | 8 | exbiri | ⊢ ( 𝑚 : 𝐴 ⟶ 𝐵 → ( 𝐵 ∈ 𝑉 → ( 𝑚 : 𝐴 ⟶ 𝐵 → 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) ) ) |
| 10 | 9 | pm2.43b | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑚 : 𝐴 ⟶ 𝐵 → 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 11 | elmapi | ⊢ ( 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑚 : 𝐴 ⟶ 𝐵 ) | |
| 12 | 10 11 | impbid1 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑚 : 𝐴 ⟶ 𝐵 ↔ 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 13 | 3 12 | bitrid | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝑚 ∈ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ↔ 𝑚 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 14 | 13 | eqrdv | ⊢ ( 𝐵 ∈ 𝑉 → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ( 𝐵 ↑m 𝐴 ) ) |