This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a set, the value of the set exponentiation ( B ^m A ) is the class of all functions from A to B . Generalisation of mapvalg (which does not require ax-rep ) to arbitrary domains. Note that the class { f | f : A --> B } can only contain set-functions, as opposed to arbitrary class-functions. When A is a proper class, there can be no set-functions on it, so the above class is empty (see also fsetdmprc0 ), hence a set. In this case, both sides of the equality in this theorem are the empty set. (Contributed by AV, 8-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mapfset | |- ( B e. V -> { f | f : A --> B } = ( B ^m A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- m e. _V |
|
| 2 | feq1 | |- ( f = m -> ( f : A --> B <-> m : A --> B ) ) |
|
| 3 | 1 2 | elab | |- ( m e. { f | f : A --> B } <-> m : A --> B ) |
| 4 | simpr | |- ( ( m : A --> B /\ B e. V ) -> B e. V ) |
|
| 5 | dmfex | |- ( ( m e. _V /\ m : A --> B ) -> A e. _V ) |
|
| 6 | 1 5 | mpan | |- ( m : A --> B -> A e. _V ) |
| 7 | 6 | adantr | |- ( ( m : A --> B /\ B e. V ) -> A e. _V ) |
| 8 | 4 7 | elmapd | |- ( ( m : A --> B /\ B e. V ) -> ( m e. ( B ^m A ) <-> m : A --> B ) ) |
| 9 | 8 | exbiri | |- ( m : A --> B -> ( B e. V -> ( m : A --> B -> m e. ( B ^m A ) ) ) ) |
| 10 | 9 | pm2.43b | |- ( B e. V -> ( m : A --> B -> m e. ( B ^m A ) ) ) |
| 11 | elmapi | |- ( m e. ( B ^m A ) -> m : A --> B ) |
|
| 12 | 10 11 | impbid1 | |- ( B e. V -> ( m : A --> B <-> m e. ( B ^m A ) ) ) |
| 13 | 3 12 | bitrid | |- ( B e. V -> ( m e. { f | f : A --> B } <-> m e. ( B ^m A ) ) ) |
| 14 | 13 | eqrdv | |- ( B e. V -> { f | f : A --> B } = ( B ^m A ) ) |