This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compose two mappings. (Contributed by SN, 11-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mapcod.1 | |- ( ph -> F e. ( A ^m B ) ) |
|
| mapcod.2 | |- ( ph -> G e. ( B ^m C ) ) |
||
| Assertion | mapcod | |- ( ph -> ( F o. G ) e. ( A ^m C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapcod.1 | |- ( ph -> F e. ( A ^m B ) ) |
|
| 2 | mapcod.2 | |- ( ph -> G e. ( B ^m C ) ) |
|
| 3 | elmapex | |- ( F e. ( A ^m B ) -> ( A e. _V /\ B e. _V ) ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( A e. _V /\ B e. _V ) ) |
| 5 | 4 | simpld | |- ( ph -> A e. _V ) |
| 6 | elmapex | |- ( G e. ( B ^m C ) -> ( B e. _V /\ C e. _V ) ) |
|
| 7 | 2 6 | syl | |- ( ph -> ( B e. _V /\ C e. _V ) ) |
| 8 | 7 | simprd | |- ( ph -> C e. _V ) |
| 9 | elmapi | |- ( F e. ( A ^m B ) -> F : B --> A ) |
|
| 10 | 1 9 | syl | |- ( ph -> F : B --> A ) |
| 11 | elmapi | |- ( G e. ( B ^m C ) -> G : C --> B ) |
|
| 12 | 2 11 | syl | |- ( ph -> G : C --> B ) |
| 13 | 10 12 | fcod | |- ( ph -> ( F o. G ) : C --> A ) |
| 14 | 5 8 13 | elmapdd | |- ( ph -> ( F o. G ) e. ( A ^m C ) ) |