This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lvecpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| lvecpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| lvecpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| lvecpropd.4 | |- ( ph -> F = ( Scalar ` K ) ) |
||
| lvecpropd.5 | |- ( ph -> F = ( Scalar ` L ) ) |
||
| lvecpropd.6 | |- P = ( Base ` F ) |
||
| lvecpropd.7 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
||
| Assertion | lvecpropd | |- ( ph -> ( K e. LVec <-> L e. LVec ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | lvecpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | lvecpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | lvecpropd.4 | |- ( ph -> F = ( Scalar ` K ) ) |
|
| 5 | lvecpropd.5 | |- ( ph -> F = ( Scalar ` L ) ) |
|
| 6 | lvecpropd.6 | |- P = ( Base ` F ) |
|
| 7 | lvecpropd.7 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
|
| 8 | 1 2 3 4 5 6 7 | lmodpropd | |- ( ph -> ( K e. LMod <-> L e. LMod ) ) |
| 9 | 4 5 | eqtr3d | |- ( ph -> ( Scalar ` K ) = ( Scalar ` L ) ) |
| 10 | 9 | eleq1d | |- ( ph -> ( ( Scalar ` K ) e. DivRing <-> ( Scalar ` L ) e. DivRing ) ) |
| 11 | 8 10 | anbi12d | |- ( ph -> ( ( K e. LMod /\ ( Scalar ` K ) e. DivRing ) <-> ( L e. LMod /\ ( Scalar ` L ) e. DivRing ) ) ) |
| 12 | eqid | |- ( Scalar ` K ) = ( Scalar ` K ) |
|
| 13 | 12 | islvec | |- ( K e. LVec <-> ( K e. LMod /\ ( Scalar ` K ) e. DivRing ) ) |
| 14 | eqid | |- ( Scalar ` L ) = ( Scalar ` L ) |
|
| 15 | 14 | islvec | |- ( L e. LVec <-> ( L e. LMod /\ ( Scalar ` L ) e. DivRing ) ) |
| 16 | 11 13 15 | 3bitr4g | |- ( ph -> ( K e. LVec <-> L e. LVec ) ) |