This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of a complete lattice subset is the least bound. (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | lubl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | 1 2 3 | lublem | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑆 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ) ) |
| 5 | 4 | simprd | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ) |
| 6 | breq2 | ⊢ ( 𝑧 = 𝑋 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ≤ 𝑋 ) ) | |
| 7 | 6 | ralbidv | ⊢ ( 𝑧 = 𝑋 → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 ) ) |
| 8 | breq2 | ⊢ ( 𝑧 = 𝑋 → ( ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ↔ ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) | |
| 9 | 7 8 | imbi12d | ⊢ ( 𝑧 = 𝑋 → ( ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ↔ ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) ) |
| 10 | 9 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑧 ) ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) |
| 11 | 5 10 | stoic3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ 𝑋 → ( 𝑈 ‘ 𝑆 ) ≤ 𝑋 ) ) |