This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of the least upper bound function of a poset. (Contributed by NM, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lubfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lubfval.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| lubfval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) | ||
| lubfval.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| Assertion | lubdm | ⊢ ( 𝜑 → dom 𝑈 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lubfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lubfval.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | lubfval.p | ⊢ ( 𝜓 ↔ ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑥 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑦 ∈ 𝑠 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 ) ) ) | |
| 5 | lubfval.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 6 | 1 2 3 4 5 | lubfval | ⊢ ( 𝜑 → 𝑈 = ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) ) |
| 7 | 6 | dmeqd | ⊢ ( 𝜑 → dom 𝑈 = dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) ) |
| 8 | riotaex | ⊢ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ∈ V | |
| 9 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) = ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) | |
| 10 | 8 9 | dmmpti | ⊢ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) = 𝒫 𝐵 |
| 11 | 10 | ineq2i | ⊢ ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ) = ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ 𝒫 𝐵 ) |
| 12 | dmres | ⊢ dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) = ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ dom ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ) | |
| 13 | dfrab2 | ⊢ { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } = ( { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ∩ 𝒫 𝐵 ) | |
| 14 | 11 12 13 | 3eqtr4i | ⊢ dom ( ( 𝑠 ∈ 𝒫 𝐵 ↦ ( ℩ 𝑥 ∈ 𝐵 𝜓 ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } |
| 15 | 7 14 | eqtrdi | ⊢ ( 𝜑 → dom 𝑈 = { 𝑠 ∈ 𝒫 𝐵 ∣ ∃! 𝑥 ∈ 𝐵 𝜓 } ) |