This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the least upper bound (LUB) of a set of (poset) elements. The domain is restricted to exclude sets s for which the LUB doesn't exist uniquely. (Contributed by NM, 12-Sep-2011) (Revised by NM, 6-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lub | ⊢ lub = ( 𝑝 ∈ V ↦ ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | club | ⊢ lub | |
| 1 | vp | ⊢ 𝑝 | |
| 2 | cvv | ⊢ V | |
| 3 | vs | ⊢ 𝑠 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑝 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑝 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑝 ) |
| 8 | vx | ⊢ 𝑥 | |
| 9 | vy | ⊢ 𝑦 | |
| 10 | 3 | cv | ⊢ 𝑠 |
| 11 | 9 | cv | ⊢ 𝑦 |
| 12 | cple | ⊢ le | |
| 13 | 5 12 | cfv | ⊢ ( le ‘ 𝑝 ) |
| 14 | 8 | cv | ⊢ 𝑥 |
| 15 | 11 14 13 | wbr | ⊢ 𝑦 ( le ‘ 𝑝 ) 𝑥 |
| 16 | 15 9 10 | wral | ⊢ ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 |
| 17 | vz | ⊢ 𝑧 | |
| 18 | 17 | cv | ⊢ 𝑧 |
| 19 | 11 18 13 | wbr | ⊢ 𝑦 ( le ‘ 𝑝 ) 𝑧 |
| 20 | 19 9 10 | wral | ⊢ ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 |
| 21 | 14 18 13 | wbr | ⊢ 𝑥 ( le ‘ 𝑝 ) 𝑧 |
| 22 | 20 21 | wi | ⊢ ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) |
| 23 | 22 17 6 | wral | ⊢ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) |
| 24 | 16 23 | wa | ⊢ ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) |
| 25 | 24 8 6 | crio | ⊢ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) |
| 26 | 3 7 25 | cmpt | ⊢ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) |
| 27 | 24 8 6 | wreu | ⊢ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) |
| 28 | 27 3 | cab | ⊢ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } |
| 29 | 26 28 | cres | ⊢ ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) |
| 30 | 1 2 29 | cmpt | ⊢ ( 𝑝 ∈ V ↦ ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) ) |
| 31 | 0 30 | wceq | ⊢ lub = ( 𝑝 ∈ V ↦ ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑝 ) ↦ ( ℩ 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) ) ) ↾ { 𝑠 ∣ ∃! 𝑥 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑥 ∧ ∀ 𝑧 ∈ ( Base ‘ 𝑝 ) ( ∀ 𝑦 ∈ 𝑠 𝑦 ( le ‘ 𝑝 ) 𝑧 → 𝑥 ( le ‘ 𝑝 ) 𝑧 ) ) } ) ) |