This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ltmul1 . Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 15-May-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmul1a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 2 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 3 | 1 2 | resubcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 4 | simpl3l | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 5 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 6 | 2 1 | posdifd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 7 | 5 6 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 0 < ( 𝐵 − 𝐴 ) ) |
| 8 | simpl3r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 0 < 𝐶 ) | |
| 9 | 3 4 7 8 | mulgt0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 0 < ( ( 𝐵 − 𝐴 ) · 𝐶 ) ) |
| 10 | 1 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 11 | 2 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℂ ) |
| 12 | 4 | recnd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 𝐶 ∈ ℂ ) |
| 13 | 10 11 12 | subdird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 − 𝐴 ) · 𝐶 ) = ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) ) |
| 14 | 9 13 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → 0 < ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) ) |
| 15 | 2 4 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 16 | 1 4 | remulcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 17 | 15 16 | posdifd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ↔ 0 < ( ( 𝐵 · 𝐶 ) − ( 𝐴 · 𝐶 ) ) ) ) |
| 18 | 14 17 | mpbird | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) |