This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ltmul1 . Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of Apostol p. 20. (Contributed by NM, 15-May-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltmul1a | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) < ( B x. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> B e. RR ) |
|
| 2 | simpl1 | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A e. RR ) |
|
| 3 | 1 2 | resubcld | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( B - A ) e. RR ) |
| 4 | simpl3l | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> C e. RR ) |
|
| 5 | simpr | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A < B ) |
|
| 6 | 2 1 | posdifd | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A < B <-> 0 < ( B - A ) ) ) |
| 7 | 5 6 | mpbid | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( B - A ) ) |
| 8 | simpl3r | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < C ) |
|
| 9 | 3 4 7 8 | mulgt0d | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( ( B - A ) x. C ) ) |
| 10 | 1 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> B e. CC ) |
| 11 | 2 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> A e. CC ) |
| 12 | 4 | recnd | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> C e. CC ) |
| 13 | 10 11 12 | subdird | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( ( B - A ) x. C ) = ( ( B x. C ) - ( A x. C ) ) ) |
| 14 | 9 13 | breqtrd | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> 0 < ( ( B x. C ) - ( A x. C ) ) ) |
| 15 | 2 4 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) e. RR ) |
| 16 | 1 4 | remulcld | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( B x. C ) e. RR ) |
| 17 | 15 16 | posdifd | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( ( A x. C ) < ( B x. C ) <-> 0 < ( ( B x. C ) - ( A x. C ) ) ) ) |
| 18 | 14 17 | mpbird | |- ( ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) /\ A < B ) -> ( A x. C ) < ( B x. C ) ) |