This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for a "less than" relationship for the mod operator. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltmod.a | |- ( ph -> A e. RR ) |
|
| ltmod.b | |- ( ph -> B e. RR+ ) |
||
| ltmod.c | |- ( ph -> C e. ( ( A - ( A mod B ) ) [,) A ) ) |
||
| Assertion | ltmod | |- ( ph -> ( C mod B ) < ( A mod B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmod.a | |- ( ph -> A e. RR ) |
|
| 2 | ltmod.b | |- ( ph -> B e. RR+ ) |
|
| 3 | ltmod.c | |- ( ph -> C e. ( ( A - ( A mod B ) ) [,) A ) ) |
|
| 4 | 1 2 | modcld | |- ( ph -> ( A mod B ) e. RR ) |
| 5 | 1 4 | resubcld | |- ( ph -> ( A - ( A mod B ) ) e. RR ) |
| 6 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 7 | icossre | |- ( ( ( A - ( A mod B ) ) e. RR /\ A e. RR* ) -> ( ( A - ( A mod B ) ) [,) A ) C_ RR ) |
|
| 8 | 5 6 7 | syl2anc | |- ( ph -> ( ( A - ( A mod B ) ) [,) A ) C_ RR ) |
| 9 | 8 3 | sseldd | |- ( ph -> C e. RR ) |
| 10 | 2 | rpred | |- ( ph -> B e. RR ) |
| 11 | 9 2 | rerpdivcld | |- ( ph -> ( C / B ) e. RR ) |
| 12 | 11 | flcld | |- ( ph -> ( |_ ` ( C / B ) ) e. ZZ ) |
| 13 | 12 | zred | |- ( ph -> ( |_ ` ( C / B ) ) e. RR ) |
| 14 | 10 13 | remulcld | |- ( ph -> ( B x. ( |_ ` ( C / B ) ) ) e. RR ) |
| 15 | 5 | rexrd | |- ( ph -> ( A - ( A mod B ) ) e. RR* ) |
| 16 | icoltub | |- ( ( ( A - ( A mod B ) ) e. RR* /\ A e. RR* /\ C e. ( ( A - ( A mod B ) ) [,) A ) ) -> C < A ) |
|
| 17 | 15 6 3 16 | syl3anc | |- ( ph -> C < A ) |
| 18 | 9 1 14 17 | ltsub1dd | |- ( ph -> ( C - ( B x. ( |_ ` ( C / B ) ) ) ) < ( A - ( B x. ( |_ ` ( C / B ) ) ) ) ) |
| 19 | icossicc | |- ( ( A - ( A mod B ) ) [,) A ) C_ ( ( A - ( A mod B ) ) [,] A ) |
|
| 20 | 19 3 | sselid | |- ( ph -> C e. ( ( A - ( A mod B ) ) [,] A ) ) |
| 21 | 1 2 20 | lefldiveq | |- ( ph -> ( |_ ` ( A / B ) ) = ( |_ ` ( C / B ) ) ) |
| 22 | 21 | eqcomd | |- ( ph -> ( |_ ` ( C / B ) ) = ( |_ ` ( A / B ) ) ) |
| 23 | 22 | oveq2d | |- ( ph -> ( B x. ( |_ ` ( C / B ) ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
| 24 | 23 | oveq2d | |- ( ph -> ( A - ( B x. ( |_ ` ( C / B ) ) ) ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 25 | 18 24 | breqtrd | |- ( ph -> ( C - ( B x. ( |_ ` ( C / B ) ) ) ) < ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 26 | modval | |- ( ( C e. RR /\ B e. RR+ ) -> ( C mod B ) = ( C - ( B x. ( |_ ` ( C / B ) ) ) ) ) |
|
| 27 | 9 2 26 | syl2anc | |- ( ph -> ( C mod B ) = ( C - ( B x. ( |_ ` ( C / B ) ) ) ) ) |
| 28 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 29 | 1 2 28 | syl2anc | |- ( ph -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
| 30 | 25 27 29 | 3brtr4d | |- ( ph -> ( C mod B ) < ( A mod B ) ) |