This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Less-than and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| prodgt0.2 | ⊢ 𝐵 ∈ ℝ | ||
| ltmul1.3 | ⊢ 𝐶 ∈ ℝ | ||
| Assertion | ltdivp1i | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ) → ( 𝐴 · 𝐶 ) < 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltplus1.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | prodgt0.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | ltmul1.3 | ⊢ 𝐶 ∈ ℝ | |
| 4 | 1re | ⊢ 1 ∈ ℝ | |
| 5 | 3 4 | readdcli | ⊢ ( 𝐶 + 1 ) ∈ ℝ |
| 6 | 3 | ltp1i | ⊢ 𝐶 < ( 𝐶 + 1 ) |
| 7 | 3 5 6 | ltleii | ⊢ 𝐶 ≤ ( 𝐶 + 1 ) |
| 8 | lemul2a | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ ( 𝐶 + 1 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝐶 ≤ ( 𝐶 + 1 ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · ( 𝐶 + 1 ) ) ) | |
| 9 | 7 8 | mpan2 | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐶 + 1 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · ( 𝐶 + 1 ) ) ) |
| 10 | 3 5 9 | mp3an12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · ( 𝐶 + 1 ) ) ) |
| 11 | 1 10 | mpan | ⊢ ( 0 ≤ 𝐴 → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · ( 𝐶 + 1 ) ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ) → ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · ( 𝐶 + 1 ) ) ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | 13 3 5 | lelttri | ⊢ ( ( 0 ≤ 𝐶 ∧ 𝐶 < ( 𝐶 + 1 ) ) → 0 < ( 𝐶 + 1 ) ) |
| 15 | 6 14 | mpan2 | ⊢ ( 0 ≤ 𝐶 → 0 < ( 𝐶 + 1 ) ) |
| 16 | 5 | gt0ne0i | ⊢ ( 0 < ( 𝐶 + 1 ) → ( 𝐶 + 1 ) ≠ 0 ) |
| 17 | 2 5 | redivclzi | ⊢ ( ( 𝐶 + 1 ) ≠ 0 → ( 𝐵 / ( 𝐶 + 1 ) ) ∈ ℝ ) |
| 18 | 16 17 | syl | ⊢ ( 0 < ( 𝐶 + 1 ) → ( 𝐵 / ( 𝐶 + 1 ) ) ∈ ℝ ) |
| 19 | ltmul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 / ( 𝐶 + 1 ) ) ∈ ℝ ∧ ( ( 𝐶 + 1 ) ∈ ℝ ∧ 0 < ( 𝐶 + 1 ) ) ) → ( 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ↔ ( 𝐴 · ( 𝐶 + 1 ) ) < ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) ) ) | |
| 20 | 1 19 | mp3an1 | ⊢ ( ( ( 𝐵 / ( 𝐶 + 1 ) ) ∈ ℝ ∧ ( ( 𝐶 + 1 ) ∈ ℝ ∧ 0 < ( 𝐶 + 1 ) ) ) → ( 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ↔ ( 𝐴 · ( 𝐶 + 1 ) ) < ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) ) ) |
| 21 | 5 20 | mpanr1 | ⊢ ( ( ( 𝐵 / ( 𝐶 + 1 ) ) ∈ ℝ ∧ 0 < ( 𝐶 + 1 ) ) → ( 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ↔ ( 𝐴 · ( 𝐶 + 1 ) ) < ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) ) ) |
| 22 | 18 21 | mpancom | ⊢ ( 0 < ( 𝐶 + 1 ) → ( 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ↔ ( 𝐴 · ( 𝐶 + 1 ) ) < ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) ) ) |
| 23 | 22 | biimpd | ⊢ ( 0 < ( 𝐶 + 1 ) → ( 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) → ( 𝐴 · ( 𝐶 + 1 ) ) < ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) ) ) |
| 24 | 15 23 | syl | ⊢ ( 0 ≤ 𝐶 → ( 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) → ( 𝐴 · ( 𝐶 + 1 ) ) < ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 0 ≤ 𝐶 ∧ 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ) → ( 𝐴 · ( 𝐶 + 1 ) ) < ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) ) |
| 26 | 2 | recni | ⊢ 𝐵 ∈ ℂ |
| 27 | 5 | recni | ⊢ ( 𝐶 + 1 ) ∈ ℂ |
| 28 | 26 27 | divcan1zi | ⊢ ( ( 𝐶 + 1 ) ≠ 0 → ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) = 𝐵 ) |
| 29 | 15 16 28 | 3syl | ⊢ ( 0 ≤ 𝐶 → ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) = 𝐵 ) |
| 30 | 29 | adantr | ⊢ ( ( 0 ≤ 𝐶 ∧ 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ) → ( ( 𝐵 / ( 𝐶 + 1 ) ) · ( 𝐶 + 1 ) ) = 𝐵 ) |
| 31 | 25 30 | breqtrd | ⊢ ( ( 0 ≤ 𝐶 ∧ 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ) → ( 𝐴 · ( 𝐶 + 1 ) ) < 𝐵 ) |
| 32 | 31 | 3adant1 | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ) → ( 𝐴 · ( 𝐶 + 1 ) ) < 𝐵 ) |
| 33 | 1 3 | remulcli | ⊢ ( 𝐴 · 𝐶 ) ∈ ℝ |
| 34 | 1 5 | remulcli | ⊢ ( 𝐴 · ( 𝐶 + 1 ) ) ∈ ℝ |
| 35 | 33 34 2 | lelttri | ⊢ ( ( ( 𝐴 · 𝐶 ) ≤ ( 𝐴 · ( 𝐶 + 1 ) ) ∧ ( 𝐴 · ( 𝐶 + 1 ) ) < 𝐵 ) → ( 𝐴 · 𝐶 ) < 𝐵 ) |
| 36 | 12 32 35 | syl2anc | ⊢ ( ( 0 ≤ 𝐴 ∧ 0 ≤ 𝐶 ∧ 𝐴 < ( 𝐵 / ( 𝐶 + 1 ) ) ) → ( 𝐴 · 𝐶 ) < 𝐵 ) |