This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conclude subspace ordering from nonzero vector membership. ( ssrdv analog.) (Contributed by NM, 17-Aug-2014) (Revised by AV, 13-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssssr.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| lssssr.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lssssr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lssssr.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) | ||
| lssssr.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lssssr.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) | ||
| Assertion | lssssr | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssssr.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 2 | lssssr.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lssssr.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 4 | lssssr.t | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) | |
| 5 | lssssr.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 6 | lssssr.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) | |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → 𝑥 = 0 ) | |
| 8 | 1 2 | lss0cl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 0 ∈ 𝑈 ) |
| 9 | 3 5 8 | syl2anc | ⊢ ( 𝜑 → 0 ∈ 𝑈 ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → 0 ∈ 𝑈 ) |
| 11 | 7 10 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → 𝑥 ∈ 𝑈 ) |
| 12 | 11 | a1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 0 ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) |
| 13 | 4 | sseld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑉 ) ) |
| 14 | 13 | ancrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ≠ 0 ) → ( 𝑥 ∈ 𝑇 → ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇 ) ) ) |
| 16 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) | |
| 17 | 16 6 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) |
| 18 | 17 | exp32 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑉 → ( 𝑥 ≠ 0 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) ) ) |
| 19 | 18 | com23 | ⊢ ( 𝜑 → ( 𝑥 ≠ 0 → ( 𝑥 ∈ 𝑉 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) ) ) |
| 20 | 19 | imp4b | ⊢ ( ( 𝜑 ∧ 𝑥 ≠ 0 ) → ( ( 𝑥 ∈ 𝑉 ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝑈 ) ) |
| 21 | 15 20 | syld | ⊢ ( ( 𝜑 ∧ 𝑥 ≠ 0 ) → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) |
| 22 | 12 21 | pm2.61dane | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 → 𝑥 ∈ 𝑈 ) ) |
| 23 | 22 | ssrdv | ⊢ ( 𝜑 → 𝑇 ⊆ 𝑈 ) |