This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conclude subspace ordering from nonzero vector membership. ( ssrdv analog.) (Contributed by NM, 17-Aug-2014) (Revised by AV, 13-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssssr.o | |- .0. = ( 0g ` W ) |
|
| lssssr.s | |- S = ( LSubSp ` W ) |
||
| lssssr.w | |- ( ph -> W e. LMod ) |
||
| lssssr.t | |- ( ph -> T C_ V ) |
||
| lssssr.u | |- ( ph -> U e. S ) |
||
| lssssr.1 | |- ( ( ph /\ x e. ( V \ { .0. } ) ) -> ( x e. T -> x e. U ) ) |
||
| Assertion | lssssr | |- ( ph -> T C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssssr.o | |- .0. = ( 0g ` W ) |
|
| 2 | lssssr.s | |- S = ( LSubSp ` W ) |
|
| 3 | lssssr.w | |- ( ph -> W e. LMod ) |
|
| 4 | lssssr.t | |- ( ph -> T C_ V ) |
|
| 5 | lssssr.u | |- ( ph -> U e. S ) |
|
| 6 | lssssr.1 | |- ( ( ph /\ x e. ( V \ { .0. } ) ) -> ( x e. T -> x e. U ) ) |
|
| 7 | simpr | |- ( ( ph /\ x = .0. ) -> x = .0. ) |
|
| 8 | 1 2 | lss0cl | |- ( ( W e. LMod /\ U e. S ) -> .0. e. U ) |
| 9 | 3 5 8 | syl2anc | |- ( ph -> .0. e. U ) |
| 10 | 9 | adantr | |- ( ( ph /\ x = .0. ) -> .0. e. U ) |
| 11 | 7 10 | eqeltrd | |- ( ( ph /\ x = .0. ) -> x e. U ) |
| 12 | 11 | a1d | |- ( ( ph /\ x = .0. ) -> ( x e. T -> x e. U ) ) |
| 13 | 4 | sseld | |- ( ph -> ( x e. T -> x e. V ) ) |
| 14 | 13 | ancrd | |- ( ph -> ( x e. T -> ( x e. V /\ x e. T ) ) ) |
| 15 | 14 | adantr | |- ( ( ph /\ x =/= .0. ) -> ( x e. T -> ( x e. V /\ x e. T ) ) ) |
| 16 | eldifsn | |- ( x e. ( V \ { .0. } ) <-> ( x e. V /\ x =/= .0. ) ) |
|
| 17 | 16 6 | sylan2br | |- ( ( ph /\ ( x e. V /\ x =/= .0. ) ) -> ( x e. T -> x e. U ) ) |
| 18 | 17 | exp32 | |- ( ph -> ( x e. V -> ( x =/= .0. -> ( x e. T -> x e. U ) ) ) ) |
| 19 | 18 | com23 | |- ( ph -> ( x =/= .0. -> ( x e. V -> ( x e. T -> x e. U ) ) ) ) |
| 20 | 19 | imp4b | |- ( ( ph /\ x =/= .0. ) -> ( ( x e. V /\ x e. T ) -> x e. U ) ) |
| 21 | 15 20 | syld | |- ( ( ph /\ x =/= .0. ) -> ( x e. T -> x e. U ) ) |
| 22 | 12 21 | pm2.61dane | |- ( ph -> ( x e. T -> x e. U ) ) |
| 23 | 22 | ssrdv | |- ( ph -> T C_ U ) |