This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| chjcl.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chnlei | ⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chjcl.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
| 4 | 3 | biantrur | ⊢ ( ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| 5 | 2 1 | chlejb1i | ⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∨ℋ 𝐴 ) = 𝐴 ) |
| 6 | eqcom | ⊢ ( ( 𝐵 ∨ℋ 𝐴 ) = 𝐴 ↔ 𝐴 = ( 𝐵 ∨ℋ 𝐴 ) ) | |
| 7 | 2 1 | chjcomi | ⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
| 8 | 7 | eqeq2i | ⊢ ( 𝐴 = ( 𝐵 ∨ℋ 𝐴 ) ↔ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 9 | 5 6 8 | 3bitri | ⊢ ( 𝐵 ⊆ 𝐴 ↔ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 10 | 9 | notbii | ⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) |
| 11 | dfpss2 | ⊢ ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ↔ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) ∧ ¬ 𝐴 = ( 𝐴 ∨ℋ 𝐵 ) ) ) | |
| 12 | 4 10 11 | 3bitr4i | ⊢ ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) |