This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodindp1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodindp1.p | ⊢ + = ( +g ‘ 𝑊 ) | ||
| lmodindp1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lmodindp1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lmodindp1.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lmodindp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| lmodindp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| lmodindp1.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | ||
| Assertion | lmodindp1 | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodindp1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodindp1.p | ⊢ + = ( +g ‘ 𝑊 ) | |
| 3 | lmodindp1.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 4 | lmodindp1.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 5 | lmodindp1.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 6 | lmodindp1.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 7 | lmodindp1.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 8 | lmodindp1.q | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) ) | |
| 9 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 10 | 1 9 4 | lspsnneg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 11 | 5 6 10 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 12 | 11 | eqcomd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) ) |
| 14 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 16 | 1 2 3 9 | grpinvid1 | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) = 𝑌 ↔ ( 𝑋 + 𝑌 ) = 0 ) ) |
| 17 | 15 6 7 16 | syl3anc | ⊢ ( 𝜑 → ( ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) = 𝑌 ↔ ( 𝑋 + 𝑌 ) = 0 ) ) |
| 18 | 17 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) = 𝑌 ) |
| 19 | 18 | sneqd | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } = { 𝑌 } ) |
| 20 | 19 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( 𝑁 ‘ { ( ( invg ‘ 𝑊 ) ‘ 𝑋 ) } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 21 | 13 20 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑋 + 𝑌 ) = 0 ) → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 22 | 21 | ex | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) = 0 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 23 | 22 | necon3d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ≠ ( 𝑁 ‘ { 𝑌 } ) → ( 𝑋 + 𝑌 ) ≠ 0 ) ) |
| 24 | 8 23 | mpd | ⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) |