This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate way to say 3 vectors are mutually independent (swap 1st and 2nd). (Contributed by NM, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspindp1.v | |- V = ( Base ` W ) |
|
| lspindp1.o | |- .0. = ( 0g ` W ) |
||
| lspindp1.n | |- N = ( LSpan ` W ) |
||
| lspindp1.w | |- ( ph -> W e. LVec ) |
||
| lspindp1.y | |- ( ph -> X e. ( V \ { .0. } ) ) |
||
| lspindp1.z | |- ( ph -> Y e. V ) |
||
| lspindp1.x | |- ( ph -> Z e. V ) |
||
| lspindp1.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| lspindp1.e | |- ( ph -> -. Z e. ( N ` { X , Y } ) ) |
||
| Assertion | lspindp1 | |- ( ph -> ( ( N ` { Z } ) =/= ( N ` { Y } ) /\ -. X e. ( N ` { Z , Y } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindp1.v | |- V = ( Base ` W ) |
|
| 2 | lspindp1.o | |- .0. = ( 0g ` W ) |
|
| 3 | lspindp1.n | |- N = ( LSpan ` W ) |
|
| 4 | lspindp1.w | |- ( ph -> W e. LVec ) |
|
| 5 | lspindp1.y | |- ( ph -> X e. ( V \ { .0. } ) ) |
|
| 6 | lspindp1.z | |- ( ph -> Y e. V ) |
|
| 7 | lspindp1.x | |- ( ph -> Z e. V ) |
|
| 8 | lspindp1.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 9 | lspindp1.e | |- ( ph -> -. Z e. ( N ` { X , Y } ) ) |
|
| 10 | 5 | eldifad | |- ( ph -> X e. V ) |
| 11 | 1 3 4 7 10 6 9 | lspindpi | |- ( ph -> ( ( N ` { Z } ) =/= ( N ` { X } ) /\ ( N ` { Z } ) =/= ( N ` { Y } ) ) ) |
| 12 | 11 | simprd | |- ( ph -> ( N ` { Z } ) =/= ( N ` { Y } ) ) |
| 13 | 4 | adantr | |- ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> W e. LVec ) |
| 14 | 5 | adantr | |- ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> X e. ( V \ { .0. } ) ) |
| 15 | 7 | adantr | |- ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> Z e. V ) |
| 16 | 6 | adantr | |- ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> Y e. V ) |
| 17 | 8 | adantr | |- ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
| 18 | simpr | |- ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> X e. ( N ` { Z , Y } ) ) |
|
| 19 | 1 2 3 13 14 15 16 17 18 | lspexch | |- ( ( ph /\ X e. ( N ` { Z , Y } ) ) -> Z e. ( N ` { X , Y } ) ) |
| 20 | 9 19 | mtand | |- ( ph -> -. X e. ( N ` { Z , Y } ) ) |
| 21 | 12 20 | jca | |- ( ph -> ( ( N ` { Z } ) =/= ( N ` { Y } ) /\ -. X e. ( N ` { Z , Y } ) ) ) |