This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmless2.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmub2x | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmless2.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | submrcl | ⊢ ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) | |
| 4 | 3 | ad2antrr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → 𝐺 ∈ Mnd ) |
| 5 | simpr | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ⊆ 𝐵 ) | |
| 6 | 5 | sselda | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝐵 ) |
| 7 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 9 | 1 7 8 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 10 | 4 6 9 | syl2anc | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) = 𝑥 ) |
| 11 | 1 | submss | ⊢ ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → 𝑇 ⊆ 𝐵 ) |
| 12 | 11 | ad2antrr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑇 ⊆ 𝐵 ) |
| 13 | simplr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑈 ⊆ 𝐵 ) | |
| 14 | 8 | subm0cl | ⊢ ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑇 ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → ( 0g ‘ 𝐺 ) ∈ 𝑇 ) |
| 16 | simpr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ 𝑈 ) | |
| 17 | 1 7 2 | lsmelvalix | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( ( 0g ‘ 𝐺 ) ∈ 𝑇 ∧ 𝑥 ∈ 𝑈 ) ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 18 | 4 12 13 15 16 17 | syl32anc | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → ( ( 0g ‘ 𝐺 ) ( +g ‘ 𝐺 ) 𝑥 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 19 | 10 18 | eqeltrrd | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑈 ) → 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 20 | 19 | ex | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝑈 → 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |