This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | |- B = ( Base ` G ) |
|
| lsmless2.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmub2x | |- ( ( T e. ( SubMnd ` G ) /\ U C_ B ) -> U C_ ( T .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | |- B = ( Base ` G ) |
|
| 2 | lsmless2.s | |- .(+) = ( LSSum ` G ) |
|
| 3 | submrcl | |- ( T e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 4 | 3 | ad2antrr | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> G e. Mnd ) |
| 5 | simpr | |- ( ( T e. ( SubMnd ` G ) /\ U C_ B ) -> U C_ B ) |
|
| 6 | 5 | sselda | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> x e. B ) |
| 7 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 8 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 9 | 1 7 8 | mndlid | |- ( ( G e. Mnd /\ x e. B ) -> ( ( 0g ` G ) ( +g ` G ) x ) = x ) |
| 10 | 4 6 9 | syl2anc | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> ( ( 0g ` G ) ( +g ` G ) x ) = x ) |
| 11 | 1 | submss | |- ( T e. ( SubMnd ` G ) -> T C_ B ) |
| 12 | 11 | ad2antrr | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> T C_ B ) |
| 13 | simplr | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> U C_ B ) |
|
| 14 | 8 | subm0cl | |- ( T e. ( SubMnd ` G ) -> ( 0g ` G ) e. T ) |
| 15 | 14 | ad2antrr | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> ( 0g ` G ) e. T ) |
| 16 | simpr | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> x e. U ) |
|
| 17 | 1 7 2 | lsmelvalix | |- ( ( ( G e. Mnd /\ T C_ B /\ U C_ B ) /\ ( ( 0g ` G ) e. T /\ x e. U ) ) -> ( ( 0g ` G ) ( +g ` G ) x ) e. ( T .(+) U ) ) |
| 18 | 4 12 13 15 16 17 | syl32anc | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> ( ( 0g ` G ) ( +g ` G ) x ) e. ( T .(+) U ) ) |
| 19 | 10 18 | eqeltrrd | |- ( ( ( T e. ( SubMnd ` G ) /\ U C_ B ) /\ x e. U ) -> x e. ( T .(+) U ) ) |
| 20 | 19 | ex | |- ( ( T e. ( SubMnd ` G ) /\ U C_ B ) -> ( x e. U -> x e. ( T .(+) U ) ) ) |
| 21 | 20 | ssrdv | |- ( ( T e. ( SubMnd ` G ) /\ U C_ B ) -> U C_ ( T .(+) U ) ) |