This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum with a subset. (Contributed by NM, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmss1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑇 ⊕ 𝑈 ) = 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | ssid | ⊢ 𝑈 ⊆ 𝑈 | |
| 3 | 1 | lsmlub | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ 𝑈 ) ⊆ 𝑈 ) ) |
| 4 | 3 | 3anidm23 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ 𝑈 ) ⊆ 𝑈 ) ) |
| 5 | 4 | biimpd | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑈 ) → ( 𝑇 ⊕ 𝑈 ) ⊆ 𝑈 ) ) |
| 6 | 2 5 | mpan2i | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊆ 𝑈 → ( 𝑇 ⊕ 𝑈 ) ⊆ 𝑈 ) ) |
| 7 | 6 | 3impia | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑇 ⊕ 𝑈 ) ⊆ 𝑈 ) |
| 8 | 1 | lsmub2 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → 𝑈 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 10 | 7 9 | eqssd | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑇 ⊕ 𝑈 ) = 𝑈 ) |