This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum with a subset. (Contributed by NM, 10-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmss1b | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊆ 𝑈 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | 1 | lsmss1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑇 ⊕ 𝑈 ) = 𝑈 ) |
| 3 | 2 | 3expia | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊆ 𝑈 → ( 𝑇 ⊕ 𝑈 ) = 𝑈 ) ) |
| 4 | 1 | lsmub1 | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 5 | sseq2 | ⊢ ( ( 𝑇 ⊕ 𝑈 ) = 𝑈 → ( 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑇 ⊆ 𝑈 ) ) | |
| 6 | 4 5 | syl5ibcom | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑇 ⊕ 𝑈 ) = 𝑈 → 𝑇 ⊆ 𝑈 ) ) |
| 7 | 3 6 | impbid | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 ⊆ 𝑈 ↔ ( 𝑇 ⊕ 𝑈 ) = 𝑈 ) ) |