This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| Assertion | lsmless12 | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmub1.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | subgrcl | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝐺 ∈ Grp ) |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 4 | subgss | ⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 | simprr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑇 ⊆ 𝑈 ) | |
| 8 | 4 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 | 8 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 7 9 | sstrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | simprl | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑅 ⊆ 𝑆 ) | |
| 12 | 4 1 | lsmless1x | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ) ∧ 𝑅 ⊆ 𝑆 ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 13 | 3 6 10 11 12 | syl31anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑇 ) ) |
| 14 | simpll | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 15 | simplr | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 16 | 1 | lsmless2 | ⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑈 ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 17 | 14 15 7 16 | syl3anc | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑆 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |
| 18 | 13 17 | sstrd | ⊢ ( ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈 ) ) → ( 𝑅 ⊕ 𝑇 ) ⊆ ( 𝑆 ⊕ 𝑈 ) ) |