This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define subgroup sum (inner direct product of subgroups). (Contributed by NM, 28-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lsm | ⊢ LSSum = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clsm | ⊢ LSSum | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑤 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑤 ) |
| 8 | vu | ⊢ 𝑢 | |
| 9 | vx | ⊢ 𝑥 | |
| 10 | 3 | cv | ⊢ 𝑡 |
| 11 | vy | ⊢ 𝑦 | |
| 12 | 8 | cv | ⊢ 𝑢 |
| 13 | 9 | cv | ⊢ 𝑥 |
| 14 | cplusg | ⊢ +g | |
| 15 | 5 14 | cfv | ⊢ ( +g ‘ 𝑤 ) |
| 16 | 11 | cv | ⊢ 𝑦 |
| 17 | 13 16 15 | co | ⊢ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) |
| 18 | 9 11 10 12 17 | cmpo | ⊢ ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) |
| 19 | 18 | crn | ⊢ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) |
| 20 | 3 8 7 7 19 | cmpo | ⊢ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) |
| 21 | 1 2 20 | cmpt | ⊢ ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) |
| 22 | 0 21 | wceq | ⊢ LSSum = ( 𝑤 ∈ V ↦ ( 𝑡 ∈ 𝒫 ( Base ‘ 𝑤 ) , 𝑢 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ran ( 𝑥 ∈ 𝑡 , 𝑦 ∈ 𝑢 ↦ ( 𝑥 ( +g ‘ 𝑤 ) 𝑦 ) ) ) ) |