This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principal ideals are a subclass of ideal. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpival.p | |- P = ( LPIdeal ` R ) |
|
| lpiss.u | |- U = ( LIdeal ` R ) |
||
| Assertion | lpiss | |- ( R e. Ring -> P C_ U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpival.p | |- P = ( LPIdeal ` R ) |
|
| 2 | lpiss.u | |- U = ( LIdeal ` R ) |
|
| 3 | eqid | |- ( RSpan ` R ) = ( RSpan ` R ) |
|
| 4 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 5 | 1 3 4 | islpidl | |- ( R e. Ring -> ( a e. P <-> E. g e. ( Base ` R ) a = ( ( RSpan ` R ) ` { g } ) ) ) |
| 6 | snssi | |- ( g e. ( Base ` R ) -> { g } C_ ( Base ` R ) ) |
|
| 7 | 3 4 2 | rspcl | |- ( ( R e. Ring /\ { g } C_ ( Base ` R ) ) -> ( ( RSpan ` R ) ` { g } ) e. U ) |
| 8 | 6 7 | sylan2 | |- ( ( R e. Ring /\ g e. ( Base ` R ) ) -> ( ( RSpan ` R ) ` { g } ) e. U ) |
| 9 | eleq1 | |- ( a = ( ( RSpan ` R ) ` { g } ) -> ( a e. U <-> ( ( RSpan ` R ) ` { g } ) e. U ) ) |
|
| 10 | 8 9 | syl5ibrcom | |- ( ( R e. Ring /\ g e. ( Base ` R ) ) -> ( a = ( ( RSpan ` R ) ` { g } ) -> a e. U ) ) |
| 11 | 10 | rexlimdva | |- ( R e. Ring -> ( E. g e. ( Base ` R ) a = ( ( RSpan ` R ) ` { g } ) -> a e. U ) ) |
| 12 | 5 11 | sylbid | |- ( R e. Ring -> ( a e. P -> a e. U ) ) |
| 13 | 12 | ssrdv | |- ( R e. Ring -> P C_ U ) |