This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function on topologies whose value is the set of limit points of the subsets of the base set. See lpval . (Contributed by NM, 10-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lp | ⊢ limPt = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clp | ⊢ limPt | |
| 1 | vj | ⊢ 𝑗 | |
| 2 | ctop | ⊢ Top | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | 1 | cv | ⊢ 𝑗 |
| 5 | 4 | cuni | ⊢ ∪ 𝑗 |
| 6 | 5 | cpw | ⊢ 𝒫 ∪ 𝑗 |
| 7 | vy | ⊢ 𝑦 | |
| 8 | 7 | cv | ⊢ 𝑦 |
| 9 | ccl | ⊢ cls | |
| 10 | 4 9 | cfv | ⊢ ( cls ‘ 𝑗 ) |
| 11 | 3 | cv | ⊢ 𝑥 |
| 12 | 8 | csn | ⊢ { 𝑦 } |
| 13 | 11 12 | cdif | ⊢ ( 𝑥 ∖ { 𝑦 } ) |
| 14 | 13 10 | cfv | ⊢ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) |
| 15 | 8 14 | wcel | ⊢ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) |
| 16 | 15 7 | cab | ⊢ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } |
| 17 | 3 6 16 | cmpt | ⊢ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) |
| 18 | 1 2 17 | cmpt | ⊢ ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |
| 19 | 0 18 | wceq | ⊢ limPt = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ { 𝑦 ∣ 𝑦 ∈ ( ( cls ‘ 𝑗 ) ‘ ( 𝑥 ∖ { 𝑦 } ) ) } ) ) |