This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of linear operators between two normed complex vector spaces. In the literature, an operator may be a partial function, i.e., the domain of an operator is not necessarily the entire vector space. However, since the domain of a linear operator is a vector subspace, we define it with a complete function for convenience and will use subset relations to specify the partial function case. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lno | ⊢ LnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clno | ⊢ LnOp | |
| 1 | vu | ⊢ 𝑢 | |
| 2 | cnv | ⊢ NrmCVec | |
| 3 | vw | ⊢ 𝑤 | |
| 4 | vt | ⊢ 𝑡 | |
| 5 | cba | ⊢ BaseSet | |
| 6 | 3 | cv | ⊢ 𝑤 |
| 7 | 6 5 | cfv | ⊢ ( BaseSet ‘ 𝑤 ) |
| 8 | cmap | ⊢ ↑m | |
| 9 | 1 | cv | ⊢ 𝑢 |
| 10 | 9 5 | cfv | ⊢ ( BaseSet ‘ 𝑢 ) |
| 11 | 7 10 8 | co | ⊢ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) |
| 12 | vx | ⊢ 𝑥 | |
| 13 | cc | ⊢ ℂ | |
| 14 | vy | ⊢ 𝑦 | |
| 15 | vz | ⊢ 𝑧 | |
| 16 | 4 | cv | ⊢ 𝑡 |
| 17 | 12 | cv | ⊢ 𝑥 |
| 18 | cns | ⊢ ·𝑠OLD | |
| 19 | 9 18 | cfv | ⊢ ( ·𝑠OLD ‘ 𝑢 ) |
| 20 | 14 | cv | ⊢ 𝑦 |
| 21 | 17 20 19 | co | ⊢ ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) |
| 22 | cpv | ⊢ +𝑣 | |
| 23 | 9 22 | cfv | ⊢ ( +𝑣 ‘ 𝑢 ) |
| 24 | 15 | cv | ⊢ 𝑧 |
| 25 | 21 24 23 | co | ⊢ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) |
| 26 | 25 16 | cfv | ⊢ ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) |
| 27 | 6 18 | cfv | ⊢ ( ·𝑠OLD ‘ 𝑤 ) |
| 28 | 20 16 | cfv | ⊢ ( 𝑡 ‘ 𝑦 ) |
| 29 | 17 28 27 | co | ⊢ ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) |
| 30 | 6 22 | cfv | ⊢ ( +𝑣 ‘ 𝑤 ) |
| 31 | 24 16 | cfv | ⊢ ( 𝑡 ‘ 𝑧 ) |
| 32 | 29 31 30 | co | ⊢ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
| 33 | 26 32 | wceq | ⊢ ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
| 34 | 33 15 10 | wral | ⊢ ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
| 35 | 34 14 10 | wral | ⊢ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
| 36 | 35 12 13 | wral | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) |
| 37 | 36 4 11 | crab | ⊢ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } |
| 38 | 1 3 2 2 37 | cmpo | ⊢ ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |
| 39 | 0 38 | wceq | ⊢ LnOp = ( 𝑢 ∈ NrmCVec , 𝑤 ∈ NrmCVec ↦ { 𝑡 ∈ ( ( BaseSet ‘ 𝑤 ) ↑m ( BaseSet ‘ 𝑢 ) ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑢 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑢 ) ( 𝑡 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑢 ) 𝑦 ) ( +𝑣 ‘ 𝑢 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑤 ) ( 𝑡 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑤 ) ( 𝑡 ‘ 𝑧 ) ) } ) |