This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is Hermitian if x .ih ( Tx ) takes only real values. Remark in ReedSimon p. 195. (Contributed by NM, 24-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lnophm | ⊢ ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → 𝑇 ∈ HrmOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ∈ HrmOp ↔ if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ HrmOp ) ) | |
| 2 | eleq1 | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ∈ LinOp ↔ if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ) ) | |
| 3 | id | ⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 5 | 3 4 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) = ( 𝑦 ·ih ( 𝑇 ‘ 𝑦 ) ) ) |
| 6 | 5 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ↔ ( 𝑦 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 7 | 6 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ) |
| 8 | fveq1 | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) = ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑦 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝑦 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ↔ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 11 | 10 | ralbidv | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( 𝑇 ‘ 𝑦 ) ) ∈ ℝ ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 12 | 7 11 | bitrid | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 13 | 2 12 | anbi12d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) ↔ ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) ) ) |
| 14 | eleq1 | ⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( I ↾ ℋ ) ∈ LinOp ↔ if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ) ) | |
| 15 | fveq1 | ⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( I ↾ ℋ ) ‘ 𝑦 ) = ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ) |
| 17 | 16 | eleq1d | ⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) ∈ ℝ ↔ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 18 | 17 | ralbidv | ⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) ∈ ℝ ↔ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) ) |
| 19 | 14 18 | anbi12d | ⊢ ( ( I ↾ ℋ ) = if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) → ( ( ( I ↾ ℋ ) ∈ LinOp ∧ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) ∈ ℝ ) ↔ ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) ) ) |
| 20 | idlnop | ⊢ ( I ↾ ℋ ) ∈ LinOp | |
| 21 | fvresi | ⊢ ( 𝑦 ∈ ℋ → ( ( I ↾ ℋ ) ‘ 𝑦 ) = 𝑦 ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑦 ∈ ℋ → ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) = ( 𝑦 ·ih 𝑦 ) ) |
| 23 | hiidrcl | ⊢ ( 𝑦 ∈ ℋ → ( 𝑦 ·ih 𝑦 ) ∈ ℝ ) | |
| 24 | 22 23 | eqeltrd | ⊢ ( 𝑦 ∈ ℋ → ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) ∈ ℝ ) |
| 25 | 24 | rgen | ⊢ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) ∈ ℝ |
| 26 | 20 25 | pm3.2i | ⊢ ( ( I ↾ ℋ ) ∈ LinOp ∧ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( ( I ↾ ℋ ) ‘ 𝑦 ) ) ∈ ℝ ) |
| 27 | 13 19 26 | elimhyp | ⊢ ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp ∧ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ ) |
| 28 | 27 | simpli | ⊢ if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ LinOp |
| 29 | 27 | simpri | ⊢ ∀ 𝑦 ∈ ℋ ( 𝑦 ·ih ( if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ‘ 𝑦 ) ) ∈ ℝ |
| 30 | 28 29 | lnophmi | ⊢ if ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) , 𝑇 , ( I ↾ ℋ ) ) ∈ HrmOp |
| 31 | 1 30 | dedth | ⊢ ( ( 𝑇 ∈ LinOp ∧ ∀ 𝑥 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → 𝑇 ∈ HrmOp ) |