This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lncnopbd | |- ( T e. ( LinOp i^i ContOp ) <-> T e. BndLinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( T e. ( LinOp i^i ContOp ) <-> ( T e. LinOp /\ T e. ContOp ) ) |
|
| 2 | lnopcnbd | |- ( T e. LinOp -> ( T e. ContOp <-> T e. BndLinOp ) ) |
|
| 3 | 2 | biimpa | |- ( ( T e. LinOp /\ T e. ContOp ) -> T e. BndLinOp ) |
| 4 | bdopln | |- ( T e. BndLinOp -> T e. LinOp ) |
|
| 5 | 2 | biimparc | |- ( ( T e. BndLinOp /\ T e. LinOp ) -> T e. ContOp ) |
| 6 | 4 5 | mpdan | |- ( T e. BndLinOp -> T e. ContOp ) |
| 7 | 4 6 | jca | |- ( T e. BndLinOp -> ( T e. LinOp /\ T e. ContOp ) ) |
| 8 | 3 7 | impbii | |- ( ( T e. LinOp /\ T e. ContOp ) <-> T e. BndLinOp ) |
| 9 | 1 8 | bitri | |- ( T e. ( LinOp i^i ContOp ) <-> T e. BndLinOp ) |