This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodindp1.v | |- V = ( Base ` W ) |
|
| lmodindp1.p | |- .+ = ( +g ` W ) |
||
| lmodindp1.o | |- .0. = ( 0g ` W ) |
||
| lmodindp1.n | |- N = ( LSpan ` W ) |
||
| lmodindp1.w | |- ( ph -> W e. LMod ) |
||
| lmodindp1.x | |- ( ph -> X e. V ) |
||
| lmodindp1.y | |- ( ph -> Y e. V ) |
||
| lmodindp1.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
||
| Assertion | lmodindp1 | |- ( ph -> ( X .+ Y ) =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodindp1.v | |- V = ( Base ` W ) |
|
| 2 | lmodindp1.p | |- .+ = ( +g ` W ) |
|
| 3 | lmodindp1.o | |- .0. = ( 0g ` W ) |
|
| 4 | lmodindp1.n | |- N = ( LSpan ` W ) |
|
| 5 | lmodindp1.w | |- ( ph -> W e. LMod ) |
|
| 6 | lmodindp1.x | |- ( ph -> X e. V ) |
|
| 7 | lmodindp1.y | |- ( ph -> Y e. V ) |
|
| 8 | lmodindp1.q | |- ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) |
|
| 9 | eqid | |- ( invg ` W ) = ( invg ` W ) |
|
| 10 | 1 9 4 | lspsnneg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { X } ) ) |
| 11 | 5 6 10 | syl2anc | |- ( ph -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { X } ) ) |
| 12 | 11 | eqcomd | |- ( ph -> ( N ` { X } ) = ( N ` { ( ( invg ` W ) ` X ) } ) ) |
| 13 | 12 | adantr | |- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { X } ) = ( N ` { ( ( invg ` W ) ` X ) } ) ) |
| 14 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 15 | 5 14 | syl | |- ( ph -> W e. Grp ) |
| 16 | 1 2 3 9 | grpinvid1 | |- ( ( W e. Grp /\ X e. V /\ Y e. V ) -> ( ( ( invg ` W ) ` X ) = Y <-> ( X .+ Y ) = .0. ) ) |
| 17 | 15 6 7 16 | syl3anc | |- ( ph -> ( ( ( invg ` W ) ` X ) = Y <-> ( X .+ Y ) = .0. ) ) |
| 18 | 17 | biimpar | |- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( ( invg ` W ) ` X ) = Y ) |
| 19 | 18 | sneqd | |- ( ( ph /\ ( X .+ Y ) = .0. ) -> { ( ( invg ` W ) ` X ) } = { Y } ) |
| 20 | 19 | fveq2d | |- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { ( ( invg ` W ) ` X ) } ) = ( N ` { Y } ) ) |
| 21 | 13 20 | eqtrd | |- ( ( ph /\ ( X .+ Y ) = .0. ) -> ( N ` { X } ) = ( N ` { Y } ) ) |
| 22 | 21 | ex | |- ( ph -> ( ( X .+ Y ) = .0. -> ( N ` { X } ) = ( N ` { Y } ) ) ) |
| 23 | 22 | necon3d | |- ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( X .+ Y ) =/= .0. ) ) |
| 24 | 8 23 | mpd | |- ( ph -> ( X .+ Y ) =/= .0. ) |