This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmmbr.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| lmmbr.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| lmmbr3.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| lmmbr3.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| lmmbrf.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| lmmcvg.8 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | ||
| lmmcvg.9 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| Assertion | lmmcvg | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmmbr.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | lmmbr.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | lmmbr3.5 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 4 | lmmbr3.6 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | lmmbrf.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 6 | lmmcvg.8 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 7 | lmmcvg.9 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 8 | breq2 | ⊢ ( 𝑥 = 𝑅 → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) ) | |
| 9 | 8 | 3anbi3d | ⊢ ( 𝑥 = 𝑅 → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ↔ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 10 | 9 | rexralbidv | ⊢ ( 𝑥 = 𝑅 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 11 | 1 2 3 4 | lmmbr3 | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) ) |
| 12 | 6 11 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 13 | 12 | simp3d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) |
| 14 | 10 13 7 | rspcdva | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) ) |
| 15 | 3 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 16 | 3simpc | ⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) ) | |
| 17 | 5 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ↔ 𝐴 ∈ 𝑋 ) ) |
| 18 | 5 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) = ( 𝐴 𝐷 𝑃 ) ) |
| 19 | 18 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ↔ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) |
| 20 | 17 19 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 21 | 16 20 | imbitrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) → ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 22 | 15 21 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) → ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 23 | 22 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) → ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 24 | 23 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 25 | 24 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑅 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) ) |
| 26 | 14 25 | mpd | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 𝐷 𝑃 ) < 𝑅 ) ) |