This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmmbr.2 | |- J = ( MetOpen ` D ) |
|
| lmmbr.3 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| lmmbr3.5 | |- Z = ( ZZ>= ` M ) |
||
| lmmbr3.6 | |- ( ph -> M e. ZZ ) |
||
| lmmbrf.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| lmmcvg.8 | |- ( ph -> F ( ~~>t ` J ) P ) |
||
| lmmcvg.9 | |- ( ph -> R e. RR+ ) |
||
| Assertion | lmmcvg | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( A e. X /\ ( A D P ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmmbr.2 | |- J = ( MetOpen ` D ) |
|
| 2 | lmmbr.3 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 3 | lmmbr3.5 | |- Z = ( ZZ>= ` M ) |
|
| 4 | lmmbr3.6 | |- ( ph -> M e. ZZ ) |
|
| 5 | lmmbrf.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 6 | lmmcvg.8 | |- ( ph -> F ( ~~>t ` J ) P ) |
|
| 7 | lmmcvg.9 | |- ( ph -> R e. RR+ ) |
|
| 8 | breq2 | |- ( x = R -> ( ( ( F ` k ) D P ) < x <-> ( ( F ` k ) D P ) < R ) ) |
|
| 9 | 8 | 3anbi3d | |- ( x = R -> ( ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) <-> ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) ) ) |
| 10 | 9 | rexralbidv | |- ( x = R -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) ) ) |
| 11 | 1 2 3 4 | lmmbr3 | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) |
| 12 | 6 11 | mpbid | |- ( ph -> ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 13 | 12 | simp3d | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) |
| 14 | 10 13 7 | rspcdva | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) ) |
| 15 | 3 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 16 | 3simpc | |- ( ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) -> ( ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) ) |
|
| 17 | 5 | eleq1d | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) e. X <-> A e. X ) ) |
| 18 | 5 | oveq1d | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) D P ) = ( A D P ) ) |
| 19 | 18 | breq1d | |- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) D P ) < R <-> ( A D P ) < R ) ) |
| 20 | 17 19 | anbi12d | |- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) <-> ( A e. X /\ ( A D P ) < R ) ) ) |
| 21 | 16 20 | imbitrid | |- ( ( ph /\ k e. Z ) -> ( ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) -> ( A e. X /\ ( A D P ) < R ) ) ) |
| 22 | 15 21 | sylan2 | |- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) -> ( A e. X /\ ( A D P ) < R ) ) ) |
| 23 | 22 | anassrs | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) -> ( A e. X /\ ( A D P ) < R ) ) ) |
| 24 | 23 | ralimdva | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) -> A. k e. ( ZZ>= ` j ) ( A e. X /\ ( A D P ) < R ) ) ) |
| 25 | 24 | reximdva | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < R ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( A e. X /\ ( A D P ) < R ) ) ) |
| 26 | 14 25 | mpd | |- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( A e. X /\ ( A D P ) < R ) ) |