This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmhmlvec | |- ( F e. ( S LMHom T ) -> ( S e. LVec <-> T e. LVec ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 2 | lmhmlmod2 | |- ( F e. ( S LMHom T ) -> T e. LMod ) |
|
| 3 | 1 2 | 2thd | |- ( F e. ( S LMHom T ) -> ( S e. LMod <-> T e. LMod ) ) |
| 4 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 5 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 6 | 4 5 | lmhmsca | |- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 7 | 6 | eqcomd | |- ( F e. ( S LMHom T ) -> ( Scalar ` S ) = ( Scalar ` T ) ) |
| 8 | 7 | eleq1d | |- ( F e. ( S LMHom T ) -> ( ( Scalar ` S ) e. DivRing <-> ( Scalar ` T ) e. DivRing ) ) |
| 9 | 3 8 | anbi12d | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ ( Scalar ` S ) e. DivRing ) <-> ( T e. LMod /\ ( Scalar ` T ) e. DivRing ) ) ) |
| 10 | 4 | islvec | |- ( S e. LVec <-> ( S e. LMod /\ ( Scalar ` S ) e. DivRing ) ) |
| 11 | 5 | islvec | |- ( T e. LVec <-> ( T e. LMod /\ ( Scalar ` T ) e. DivRing ) ) |
| 12 | 9 10 11 | 3bitr4g | |- ( F e. ( S LMHom T ) -> ( S e. LVec <-> T e. LVec ) ) |