This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmhmclm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 2 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 3 | 1 2 | 2thd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ LMod ↔ 𝑇 ∈ LMod ) ) |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 6 | 4 5 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 7 | 6 | eqcomd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑇 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Scalar ‘ 𝑆 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ↔ ( Scalar ‘ 𝑇 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) ) |
| 11 | 8 | eleq1d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∈ ( SubRing ‘ ℂfld ) ↔ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 12 | 3 10 11 | 3anbi123d | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∈ ( SubRing ‘ ℂfld ) ) ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) ) |
| 13 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 14 | 4 13 | isclm | ⊢ ( 𝑆 ∈ ℂMod ↔ ( 𝑆 ∈ LMod ∧ ( Scalar ‘ 𝑆 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) | |
| 16 | 5 15 | isclm | ⊢ ( 𝑇 ∈ ℂMod ↔ ( 𝑇 ∈ LMod ∧ ( Scalar ‘ 𝑇 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ∧ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∈ ( SubRing ‘ ℂfld ) ) ) |
| 17 | 12 14 16 | 3bitr4g | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝑆 ∈ ℂMod ↔ 𝑇 ∈ ℂMod ) ) |