This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmhmclm | |- ( F e. ( S LMHom T ) -> ( S e. CMod <-> T e. CMod ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 2 | lmhmlmod2 | |- ( F e. ( S LMHom T ) -> T e. LMod ) |
|
| 3 | 1 2 | 2thd | |- ( F e. ( S LMHom T ) -> ( S e. LMod <-> T e. LMod ) ) |
| 4 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 5 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 6 | 4 5 | lmhmsca | |- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 7 | 6 | eqcomd | |- ( F e. ( S LMHom T ) -> ( Scalar ` S ) = ( Scalar ` T ) ) |
| 8 | 7 | fveq2d | |- ( F e. ( S LMHom T ) -> ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` T ) ) ) |
| 9 | 8 | oveq2d | |- ( F e. ( S LMHom T ) -> ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) ) |
| 10 | 7 9 | eqeq12d | |- ( F e. ( S LMHom T ) -> ( ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) <-> ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) ) ) |
| 11 | 8 | eleq1d | |- ( F e. ( S LMHom T ) -> ( ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) <-> ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) |
| 12 | 3 10 11 | 3anbi123d | |- ( F e. ( S LMHom T ) -> ( ( S e. LMod /\ ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) /\ ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) ) <-> ( T e. LMod /\ ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) /\ ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) ) |
| 13 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 14 | 4 13 | isclm | |- ( S e. CMod <-> ( S e. LMod /\ ( Scalar ` S ) = ( CCfld |`s ( Base ` ( Scalar ` S ) ) ) /\ ( Base ` ( Scalar ` S ) ) e. ( SubRing ` CCfld ) ) ) |
| 15 | eqid | |- ( Base ` ( Scalar ` T ) ) = ( Base ` ( Scalar ` T ) ) |
|
| 16 | 5 15 | isclm | |- ( T e. CMod <-> ( T e. LMod /\ ( Scalar ` T ) = ( CCfld |`s ( Base ` ( Scalar ` T ) ) ) /\ ( Base ` ( Scalar ` T ) ) e. ( SubRing ` CCfld ) ) ) |
| 17 | 12 14 16 | 3bitr4g | |- ( F e. ( S LMHom T ) -> ( S e. CMod <-> T e. CMod ) ) |