This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation "sequence f converges to point y " in a metric space. (Contributed by NM, 7-Sep-2006) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmfval | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lm | ⊢ ⇝𝑡 = ( 𝑗 ∈ Top ↦ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) | |
| 2 | simpr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 ) | |
| 3 | 2 | unieqd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = ∪ 𝐽 ) |
| 4 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → 𝑋 = ∪ 𝐽 ) |
| 6 | 3 5 | eqtr4d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ∪ 𝑗 = 𝑋 ) |
| 7 | 6 | oveq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∪ 𝑗 ↑pm ℂ ) = ( 𝑋 ↑pm ℂ ) ) |
| 8 | 7 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ↔ 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) ) |
| 9 | 6 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( 𝑥 ∈ ∪ 𝑗 ↔ 𝑥 ∈ 𝑋 ) ) |
| 10 | 2 | raleqdv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ↔ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) |
| 11 | 8 9 10 | 3anbi123d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → ( ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) ) |
| 12 | 11 | opabbidv | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑗 = 𝐽 ) → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( ∪ 𝑗 ↑pm ℂ ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀ 𝑢 ∈ 𝑗 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |
| 13 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 14 | df-3an | ⊢ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ↔ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) ) | |
| 15 | 14 | opabbii | ⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } = { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } |
| 16 | opabssxp | ⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ) ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) | |
| 17 | 15 16 | eqsstri | ⊢ { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) |
| 18 | ovex | ⊢ ( 𝑋 ↑pm ℂ ) ∈ V | |
| 19 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 20 | xpexg | ⊢ ( ( ( 𝑋 ↑pm ℂ ) ∈ V ∧ 𝑋 ∈ 𝐽 ) → ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∈ V ) | |
| 21 | 18 19 20 | sylancr | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∈ V ) |
| 22 | ssexg | ⊢ ( ( { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ⊆ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∧ ( ( 𝑋 ↑pm ℂ ) × 𝑋 ) ∈ V ) → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ∈ V ) | |
| 23 | 17 21 22 | sylancr | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ∈ V ) |
| 24 | 1 12 13 23 | fvmptd2 | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ⇝𝑡 ‘ 𝐽 ) = { 〈 𝑓 , 𝑥 〉 ∣ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑥 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑥 ∈ 𝑢 → ∃ 𝑦 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑦 ) : 𝑦 ⟶ 𝑢 ) ) } ) |