This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 2-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfgrn1cycl.v | |- V = ( Vtx ` G ) |
|
| lfgrn1cycl.i | |- I = ( iEdg ` G ) |
||
| Assertion | lfgrn1cycl | |- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( F ( Cycles ` G ) P -> ( # ` F ) =/= 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfgrn1cycl.v | |- V = ( Vtx ` G ) |
|
| 2 | lfgrn1cycl.i | |- I = ( iEdg ` G ) |
|
| 3 | cyclprop | |- ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 4 | cycliswlk | |- ( F ( Cycles ` G ) P -> F ( Walks ` G ) P ) |
|
| 5 | 2 1 | lfgrwlknloop | |- ( ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 6 | 1nn | |- 1 e. NN |
|
| 7 | eleq1 | |- ( ( # ` F ) = 1 -> ( ( # ` F ) e. NN <-> 1 e. NN ) ) |
|
| 8 | 6 7 | mpbiri | |- ( ( # ` F ) = 1 -> ( # ` F ) e. NN ) |
| 9 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` F ) ) <-> ( # ` F ) e. NN ) |
|
| 10 | 8 9 | sylibr | |- ( ( # ` F ) = 1 -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 11 | fveq2 | |- ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) |
|
| 12 | fv0p1e1 | |- ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) |
|
| 13 | 11 12 | neeq12d | |- ( k = 0 -> ( ( P ` k ) =/= ( P ` ( k + 1 ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 14 | 13 | rspcv | |- ( 0 e. ( 0 ..^ ( # ` F ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 15 | 10 14 | syl | |- ( ( # ` F ) = 1 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 16 | 15 | impcom | |- ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ ( # ` F ) = 1 ) -> ( P ` 0 ) =/= ( P ` 1 ) ) |
| 17 | fveq2 | |- ( ( # ` F ) = 1 -> ( P ` ( # ` F ) ) = ( P ` 1 ) ) |
|
| 18 | 17 | neeq2d | |- ( ( # ` F ) = 1 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 19 | 18 | adantl | |- ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ ( # ` F ) = 1 ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
| 20 | 16 19 | mpbird | |- ( ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ ( # ` F ) = 1 ) -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) |
| 21 | 20 | ex | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( ( # ` F ) = 1 -> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
| 22 | 21 | necon2d | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 1 ) ) |
| 23 | 5 22 | syl | |- ( ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } /\ F ( Walks ` G ) P ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 1 ) ) |
| 24 | 23 | ex | |- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( F ( Walks ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( # ` F ) =/= 1 ) ) ) |
| 25 | 24 | com13 | |- ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( # ` F ) =/= 1 ) ) ) |
| 26 | 25 | adantl | |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( # ` F ) =/= 1 ) ) ) |
| 27 | 3 4 26 | sylc | |- ( F ( Cycles ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( # ` F ) =/= 1 ) ) |
| 28 | 27 | com12 | |- ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( F ( Cycles ` G ) P -> ( # ` F ) =/= 1 ) ) |