This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemaxle | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | max2 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |
| 3 | 2 | adantr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |
| 4 | simpr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 5 | simpll | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 6 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ∈ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ∈ ℝ ) |
| 8 | letr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) ) | |
| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) ) |
| 10 | 3 9 | mpan2d | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) ) |
| 11 | 10 | 3impia | ⊢ ( ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ if ( 𝐶 ≤ 𝐵 , 𝐵 , 𝐶 ) ) |