This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number which is less than or equal to a second real number is less than or equal to the maximum/supremum of the second real number and a third real number. (Contributed by AV, 8-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemaxle | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR /\ A <_ B ) -> A <_ if ( C <_ B , B , C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | max2 | |- ( ( C e. RR /\ B e. RR ) -> B <_ if ( C <_ B , B , C ) ) |
|
| 2 | 1 | ancoms | |- ( ( B e. RR /\ C e. RR ) -> B <_ if ( C <_ B , B , C ) ) |
| 3 | 2 | adantr | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR ) -> B <_ if ( C <_ B , B , C ) ) |
| 4 | simpr | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR ) -> A e. RR ) |
|
| 5 | simpll | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR ) -> B e. RR ) |
|
| 6 | ifcl | |- ( ( B e. RR /\ C e. RR ) -> if ( C <_ B , B , C ) e. RR ) |
|
| 7 | 6 | adantr | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR ) -> if ( C <_ B , B , C ) e. RR ) |
| 8 | letr | |- ( ( A e. RR /\ B e. RR /\ if ( C <_ B , B , C ) e. RR ) -> ( ( A <_ B /\ B <_ if ( C <_ B , B , C ) ) -> A <_ if ( C <_ B , B , C ) ) ) |
|
| 9 | 4 5 7 8 | syl3anc | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR ) -> ( ( A <_ B /\ B <_ if ( C <_ B , B , C ) ) -> A <_ if ( C <_ B , B , C ) ) ) |
| 10 | 3 9 | mpan2d | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR ) -> ( A <_ B -> A <_ if ( C <_ B , B , C ) ) ) |
| 11 | 10 | 3impia | |- ( ( ( B e. RR /\ C e. RR ) /\ A e. RR /\ A <_ B ) -> A <_ if ( C <_ B , B , C ) ) |